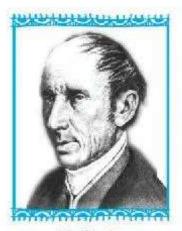


CBSE V ICSE / ISC	STATE BOARDS V	NCERT V	MOCK TESTS	STUDY MATERIAL ~	OLYMPIADS ~	SCHOOL ADMISSION	Q
ENTRANCE EXAMS V	STUDENTS GUIDE V	OTHERS V					
Full name							
Email id							
Mobile No							
Select State					\$		

SUBSCRIBE

Here you can get the NCERT Book Class 12 Maths Chapter 8 Application of Integrals

NCERT Book Class 12 Maths Chapter 8 Application of Integrals

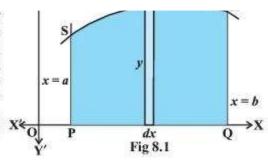


APPLICATION OF INTEGRALS

8.1 Introduction

In geometry, we have learnt formulae to calculate areas of various geometrical figures including triangles, rectangles, trapezias and circles. Such formulae are fundamental in the applications of mathematics to many real life problems. The formulae of elementary geometry allow us to calculate areas of many simple figures. However, they are inadequate for calculating the areas enclosed by curves. For that we shall need some concepts of Integral Calculus.

In the previous chapter, we have studied to find the area bounded by the curve y = f(x), the ordinates x = a, x = b and x-axis, while calculating definite integral as the limit of a sum. Here, in this chapter, we shall study a specific application of integrals to find the area under simple curves, area between lines and arcs of circles, parabolas and ellipses (standard forms only). We shall also deal with finding



A.L. Cauchy (1789-1857)

^

ENTRANCE EXAMS V STUDENTS GUIDE V OTHERS V

we consider the easy and intuitive way of finding the area bounded by the curve y = f(x), x-axis and the ordinates x = a and x = b. From Fig 8.1, we can think of area under the curve as composed of large number of very thin vertical strips. Consider an arbitrary strip of height y and width dx, then dA (area of the elementary strip) = ydx, where, y = f(x).

2019-20

360 MATHEMATICS

This area is called the *elementary area* which is located at an arbitrary position within the region which is specified by some value of x between a and b. We can think of the total area A of the region between x-axis, ordinates x = a, x = b and the curve y = f(x) as the result of adding up the elementary areas of thin strips across the region PQRSP. Symbolically, we express

$$A = \int_a^b dA = \int_a^b y dx = \int_a^b f(x) dx$$

The area A of the region bounded by the curve x = g(y), y-axis and the lines y = c, y = d is given by

$$A = \int_{a}^{d} x dy = \int_{a}^{d} g(y) dy$$

Here, we consider horizontal strips as shown in the Fig 8.2

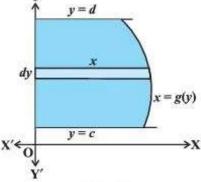


Fig 8.2

Remark If the position of the curve under consideration is below the x-axis, then since f(x) < 0 from x = a to x = b, as shown in Fig 8.3, the area bounded by the curve, x-axis and the ordinates x = a, x = b come out to be negative. But, it is only the numerical value of the area which is taken into consideration. Thus, if the area is negative, we

take its absolute value, i.e., $\left| \int_a^b f(x) dx \right|$.

UPES Admission 2022 Open Apply Now!!

CBSE V ICSE / ISC STATE BOARDS V NCERT V MOCK TESTS STUDY MATERIAL V OLYMPIADS V SCHOOL ADMISSION

ENTRANCE EXAMS V STUDENTS GUIDE V OTHERS V

Generally, it may happen that some portion of the curve is above x-axis and some is below the x-axis as shown in the Fig 8.4. Here, $A_1 < 0$ and $A_2 > 0$. Therefore, the area A bounded by the curve y = f(x), x-axis and the ordinates x = a and x = b is given by $A = |A_1| + A_2$.

APPLICATION OF INTEGRALS

361

Q

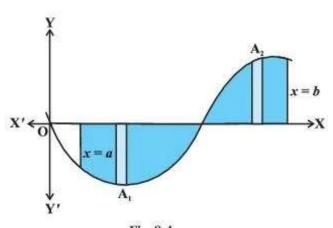
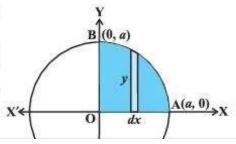



Fig 8.4

Example 1 Find the area enclosed by the circle $x^2 + y^2 = a^2$.

Solution From Fig 8.5, the whole area enclosed by the given circle

= 4 (area of the region AOBA bounded by the curve, x-axis and the ordinates x = 0 and x = a) [as the circle is symmetrical about both x-axis and y-axis]

UPES Admission 2022 Open Apply Now!!

ENTRANCE EXAMS V STUDENTS GUIDE V OTHERS V

As the region AOBA lies in the first quadrant, y is taken as positive. Integrating, we get the whole area enclosed by the given circle

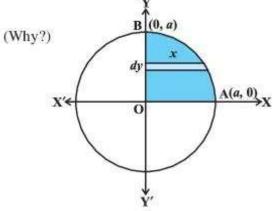
$$= 4 \left[\frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-1} \frac{x}{a} \right]_0^a$$

$$= 4 \left[\left(\frac{a}{2} \times 0 + \frac{a^2}{2} \sin^{-1} 1 \right) - 0 \right] = 4 \left(\frac{a^2}{2} \right) \left(\frac{\pi}{2} \right) = \pi a^2$$

2019-20

362 MATHEMATICS

Alternatively, considering horizontal strips as shown in Fig 8.6, the whole area of the region enclosed by circle


Y

$$= 4 \int_0^a x dy = 4 \int_0^a \sqrt{a^2 - y^2} dy$$

$$= 4 \left[\frac{y}{2} \sqrt{a^2 - y^2} + \frac{a^2}{2} \sin^{-1} \frac{y}{a} \right]_0^a$$

$$= 4 \left[\left(\frac{a}{2} \times 0 + \frac{a^2}{2} \sin^{-1} 1 \right) - 0 \right]$$

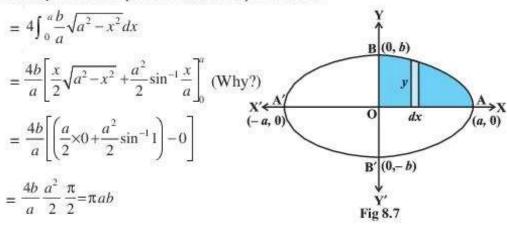
$$= 4 \frac{a^2}{2} \frac{\pi}{2} = \pi a^2$$

Example 2 Find the area enclosed by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$

Solution From Fig 8.7, the area of the region ABA'B'A bounded by the ellipse

$$= 4 \begin{pmatrix} area & of the region & AOBA & in the first quadrant bounded \\ by the curve, x - axis and the ordinates & x = 0, x = a \end{pmatrix}$$

(as the ellipse is symmetrical about both r-axis and v-axis)


UPES Admission 2022 Open Apply Now!!

aglasem

CBSE V ICSE / ISC STATE BOARDS V NCERT V MOCK TESTS STUDY MATERIAL V OLYMPIADS V SCHOOL ADMISSION

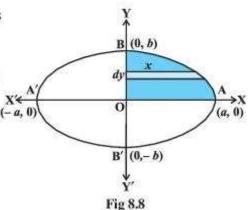
ENTRANCE EXAMS V STUDENTS GUIDE V OTHERS V

quadrant, y is taken as positive. So, the required area is

2019-20

APPLICATION OF INTEGRALS

363


Alternatively, considering horizontal strips as shown in the Fig 8.8, the area of the ellipse is

$$= 4 \int_{a}^{b} x dy = 4 \frac{a}{b} \int_{0}^{b} \sqrt{b^{2} - y^{2}} dy \text{ (Why?)}$$

$$= \frac{4a}{b} \left[\frac{y}{2} \sqrt{b^{2} - y^{2}} + \frac{b^{2}}{2} \sin^{-1} \frac{y}{b} \right]_{0}^{b}$$

$$= \frac{4a}{b} \left[\left(\frac{b}{2} \times 0 + \frac{b^{2}}{2} \sin^{-1} 1 \right) - 0 \right]$$

$$= \frac{4a}{b} \frac{b^{2}}{2} \frac{\pi}{2} = \pi ab$$

8.2.1 The area of the region bounded by a curve and a line

In this subsection, we will find the area of the region bounded by a line and a circle,

^

Q

UPES Admission 2022 Open Apply Now!!

MOCK TESTS CBSE ICSE / ISC STATE BOARDS STUDY MATERIAL ~ **OLYMPIADS** SCHOOL ADMISSION

ENTRANCE EXAMS V STUDENTS GUIDE V OTHERS

> Solution Since the given curve represented by the equation $y = x^2$ is a parabola symmetrical about y-axis only, therefore, from Fig 8.9, the required area of the region AOBA is given by

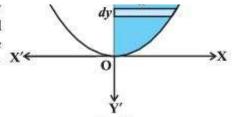


Fig 8.9

$$2\int_{0}^{4} x dy =$$

(area of the region BONB bounded by curve, y - axis) and the lines y = 0 and y = 4

$$= 2 \int_0^4 \sqrt{y} dy = 2 \times \frac{2}{3} \left[y^{\frac{3}{2}} \right]_0^4 = \frac{4}{3} \times 8 = \frac{32}{3} \quad \text{(Why?)}$$

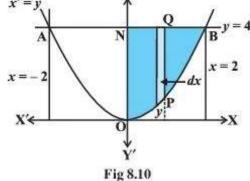
Here, we have taken horizontal strips as indicated in the Fig 8.9.

2019-20

MATHEMATICS 364

Alternatively, we may consider the vertical strips like PQ as shown in the Fig 8.10 to obtain the area of the region AOBA. To this end, we solve the equations $x^2 = y$ and y = 4which gives x = -2 and x = 2.

Thus, the region AOBA may be stated as the region bounded by the curve $y = x^2$, y = 4and the ordinates x = -2 and x = 2.


Therefore, the area of the region AOBA

$$= \int_{-2}^{2} y dx$$

[y = (y-coordinate of Q) – (y-coordinate of P) = $4 - x^2$]

$$= 2 \int_{0}^{2} (4 - x^{2}) dx \qquad \text{(Why?)}$$

UPES Admission 2022 Open Apply Now!!

ENTRANCE EXAMS V STUDENTS GUIDE V OTHERS V

the line y = x, and the circle $x^2 + y^2 = 32$.

Solution The given equations are

$$y = x$$
 ... (1)

and
$$x^2 + y^2 = 32$$
 ... (2)

Solving (1) and (2), we find that the line and the circle meet at B(4, 4) in the first quadrant (Fig 8.11). Draw perpendicular BM to the x-axis.

Therefore, the required area = area of the region OBMO + area of the region BMAB.

Now, the area of the region OBMO

$$= \int_0^4 y dx = \int_0^4 x dx \qquad ... (3)$$
$$= \frac{1}{2} \left[x^2 \right]_0^4 = 8$$

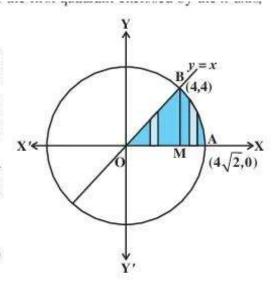


Fig 8.11

2019-20

APPLICATION OF INTEGRALS

365

Again, the area of the region BMAB

$$= \int_{4}^{4\sqrt{2}} y dx = \int_{4}^{4\sqrt{2}} \sqrt{32 - x^2} dx$$

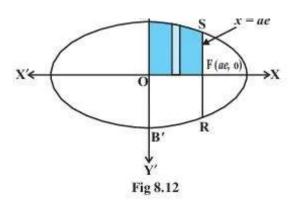
$$= \left[\frac{1}{2} x \sqrt{32 - x^2} + \frac{1}{2} \times 32 \times \sin^{-1} \frac{x}{4\sqrt{2}} \right]_{4}^{4\sqrt{2}}$$

$$= \left(\frac{1}{2} 4 \sqrt{2} \times 0 + \frac{1}{2} \times 32 \times \sin^{-1} 1 \right) - \left(\frac{4}{2} \sqrt{32 - 16} + \frac{1}{2} \times 32 \times \sin^{-1} \frac{1}{\sqrt{2}} \right)$$

$$= 8 \pi - (8 + 4\pi) = 4\pi - 8 \qquad \dots (4)$$

Adding (3) and (4), we get, the required area = 4π .

Example 5 Find the area bounded by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ and the ordinates x = 0


ENTRANCE EXAMS V STUDENTS GUIDE V OTHERS V

$$= 2\int_{0}^{ae} y dx = 2\frac{b}{a} \int_{0}^{ae} \sqrt{a^{2} - x^{2}} dx$$

$$= \frac{2b}{a} \left[\frac{x}{2} \sqrt{a^{2} - x^{2}} + \frac{a^{2}}{2} \sin^{-1} \frac{x}{a} \right]_{0}^{ae}$$

$$= \frac{2b}{2a} \left[ae \sqrt{a^{2} - a^{2}e^{2}} + a^{2} \sin^{-1} e \right]$$

$$= ab \left[e\sqrt{1 - e^{2}} + \sin^{-1} e \right]$$

EXERCISE 8.1

- 1. Find the area of the region bounded by the curve $y^2 = x$ and the lines x = 1, x = 4 and the x-axis in the first quadrant.
- 2. Find the area of the region bounded by $y^2 = 9x$, x = 2, x = 4 and the x-axis in the first quadrant.

2019-20

366 MATHEMATICS

- 3. Find the area of the region bounded by $x^2 = 4y$, y = 2, y = 4 and the y-axis in the first quadrant.
- 4. Find the area of the region bounded by the ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$.
- 5. Find the area of the region bounded by the ellipse $\frac{x^2}{4} + \frac{y^2}{9} = 1$.
- 6. Find the area of the region in the first quadrant enclosed by x-axis, line $x = \sqrt{3} y$ and the circle $x^2 + y^2 = 4$.
- 7. Find the area of the smaller part of the circle $x^2 + y^2 = a^2$ cut off by the line $x = \frac{a}{\sqrt{2}}$.
- 8. The area between $x = y^2$ and x = 4 is divided into two equal parts by the line

UPES Admission 2022 Open Apply Now!!

STUDY MATERIAL ~ CBSE ICSE / ISC STATE BOARDS NCERT **MOCK TESTS** OLYMPIADS ~ SCHOOL ADMISSION

ENTRANCE EXAMS V STUDENTS GUIDE V OTHERS >

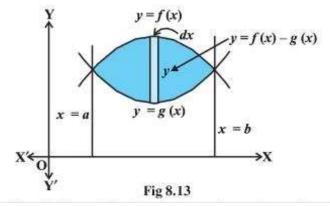
Choose the correct answer in the following Exercises 12 and 13.

- 12. Area lying in the first quadrant and bounded by the circle $x^2 + y^2 = 4$ and the lines x = 0 and x = 2 is
 - (A) T
- (B) $\frac{\pi}{2}$ (C) $\frac{\pi}{3}$ (D) $\frac{\pi}{4}$

- 13. Area of the region bounded by the curve $y^2 = 4x$, y-axis and the line y = 3 is
 - (A) 2
- (B) $\frac{9}{4}$ (C) $\frac{9}{3}$ (D) $\frac{9}{2}$

8.3 Area between Two Curves

Intuitively, true in the sense of Leibnitz, integration is the act of calculating the area by cutting the region into a large number of small strips of elementary area and then adding up these elementary areas. Suppose we are given two curves represented by y = f(x), y = g(x), where $f(x) \ge g(x)$ in [a, b] as shown in Fig. 8.13. Here the points of intersection of these two curves are given by x = a and x = b obtained by taking common values of y from the given equation of two curves.


For setting up a formula for the integral, it is convenient to take elementary area in the form of vertical strips. As indicated in the Fig 8.13, elementary strip has height

2019-20

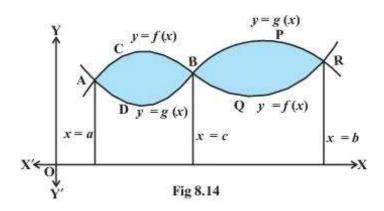
APPLICATION OF INTEGRALS

367

f(x) - g(x) and width dx so that the elementary area

UPES Admission 2022 Open Apply Now!!

aglasem


ENTRANCE EXAMS V STUDENTS GUIDE V OTHERS

– [area bounded by y = g(x), x-axis and the lines x = a, x = b]

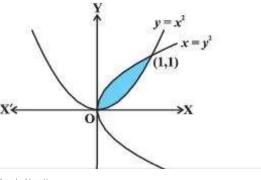
$$= \int_{a}^{b} f(x) dx - \int_{a}^{b} g(x) dx = \int_{a}^{b} [f(x) - g(x)] dx, \text{ where } f(x) \ge g(x) \text{ in } [a, b]$$

If $f(x) \ge g(x)$ in [a, c] and $f(x) \le g(x)$ in [c, b], where a < c < b as shown in the Fig 8.14, then the area of the regions bounded by curves can be written as Total Area = Area of the region ACBDA + Area of the region BPRQB

$$= \int_a^c [f(x) - g(x)] dx + \int_c^b [g(x) - f(x)] dx$$

2019-20

368 MATHEMATICS


Example 6 Find the area of the region bounded by the two parabolas $y = x^2$ and $y^2 = x$.

Solution The point of intersection of these two parabolas are O (0, 0) and A (1, 1) as shown in the Fig 8.15.

Here, we can set $y^2 = x$ or $y = \sqrt{x} = f(x)$ and $y = x^2 = g(x)$, where, $f(x) \ge g(x)$ in [0, 1].

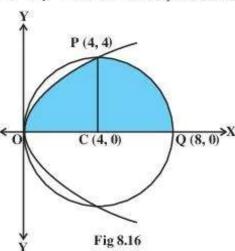
Therefore, the required area of the shaded region

$$= \int_0^1 [f(x) - g(x)] dx$$

UPES Admission 2022 Open Apply Now!!

ENTRANCE EXAMS V STUDENTS GUIDE V OTHERS V

Example 7 Find the area lying above x-axis and included between the circle $x^2 + y^2 = 8x$ and inside of the parabola $y^2 = 4x$.


Solution The given equation of the circle $x^2 + y^2 = 8x$ can be expressed as

 $(x-4)^2 + y^2 = 16$. Thus, the centre of the circle is (4,0) and radius is 4. Its intersection with the parabola $y^2 = 4x$ gives

or
$$x^2 + 4x = 8x$$

or $x^2 - 4x = 0$
or $x(x-4) = 0$
or $x = 0, x = 4$

Thus, the points of intersection of these two curves are O(0,0) and P(4,4) above the x-axis.

From the Fig 8.16, the required area of the region OPQCO included between these two curves above x-axis is

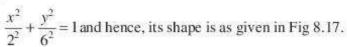
$$= \int_0^4 y dx + \int_4^8 y dx$$

= $2 \int_0^4 \sqrt{x} dx + \int_4^8 \sqrt{4^2 - (x - 4)^2} dx$ (Why?)

2019-20

APPLICATION OF INTEGRALS

$$= 2 \times \frac{2}{3} \left[x^{\frac{3}{2}} \right]_{0}^{4} + \int_{0}^{4} \sqrt{4^{2} - t^{2}} dt, \text{ where, } x - 4 = t \text{ (Why?)}$$


$$= \frac{32}{3} + \left[\frac{t}{2}\sqrt{4^2 - t^2} + \frac{1}{2} \times 4^2 \times \sin^{-1}\frac{t}{4}\right]_0^4$$

UPES Admission 2022 Open Apply Now!!

ENTRANCE EXAMS V STUDENTS GUIDE V OTHERS V

chord AB.

Solution Given equation of the ellipse $9x^2 + y^2 = 36$ can be expressed as $\frac{x^2}{4} + \frac{y^2}{36} = 1$ or

Accordingly, the equation of the chord AB is

$$y - 0 = \frac{6 - 0}{0 - 2}(x - 2)$$
$$y = -3(x - 2)$$

or

$$y = -3x + 6$$

Area of the shaded region as shown in the Fig 8.17.

$$= 3 \int_0^2 \sqrt{4 - x^2} dx - \int_0^2 (6 - 3x) dx$$
 (Why?)

$$= 3\left[\frac{x}{2}\sqrt{4-x^2} + \frac{4}{2}\sin^{-1}\frac{x}{2}\right]_0^2 - \left[6x - \frac{3x^2}{2}\right]_0^2$$

$$= 3\left[\frac{2}{2} \times 0 + 2\sin^{-1}(1)\right] - \left[12 - \frac{12}{2}\right] = 3 \times 2 \times \frac{\pi}{2} - 6 = 3\pi - 6$$

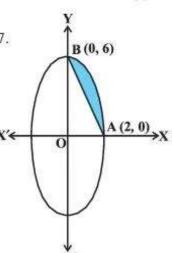
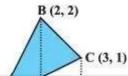


Fig 8.17

2019-20


370 MATHEMATICS

Example 9 Using integration find the area of region bounded by the triangle whose vertices are (1, 0), (2, 2) and (3, 1).

Solution Let A(1, 0), B(2, 2) and C(3, 1) be the vertices of a triangle ABC (Fig 8.18).

Area of AABC

= Area of ΔABD + Area of trapezium

UPES Admission 2022 Open Apply Now!!

aglasem

CBSE V ICSE / ISC STATE BOARDS V NCERT V MOCK TESTS STUDY MATERIAL V OLYMPIADS V SCHOOL ADMISSION

ENTRANCE EXAMS V STUDENTS GUIDE V OTHERS V

Hence, area of \triangle ABC = $\int_{1}^{2} 2(x-1) dx + \int_{2}^{3} (4-x) dx - \int_{1}^{3} \frac{x-1}{2} dx$ $= 2\left[\frac{x^{2}}{2} - x\right]_{1}^{2} + \left[4x - \frac{x^{2}}{2}\right]_{2}^{3} - \frac{1}{2}\left[\frac{x^{2}}{2} - x\right]_{1}^{3}$ $= 2\left[\left(\frac{2^{2}}{2} - 2\right) - \left(\frac{1}{2} - 1\right)\right] + \left[\left(4 \times 3 - \frac{3^{2}}{2}\right) - \left(4 \times 2 - \frac{2^{2}}{2}\right)\right] - \frac{1}{2}\left[\left(\frac{3^{2}}{2} - 3\right) - \left(\frac{1}{2} - 1\right)\right]$ $= \frac{3}{2}$

Example 10 Find the area of the region enclosed between the two circles: $x^2 + y^2 = 4$ and $(x - 2)^2 + y^2 = 4$.

Solution Equations of the given circles are

$$x^2 + y^2 = 4$$
 ... (1)
and $(x-2)^2 + y^2 = 4$... (2)

Equation (1) is a circle with centre O at the origin and radius 2. Equation (2) is a circle with centre C (2, 0) and radius 2. Solving equations (1) and (2), we have

or
$$(x-2)^2 + y^2 = x^2 + y^2$$

or $x^2 - 4x + 4 + y^2 = x^2 + y^2$
or $x = 1$ which gives $y = \pm \sqrt{3}$

Thus, the points of intersection of the given circles are A(1, $\sqrt{3}$) and A'(1, $-\sqrt{3}$) as shown in the Fig 8.19.

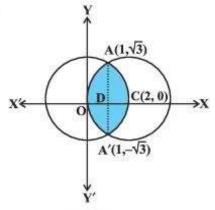


Fig 8.19

2019-20

APPLICATION OF INTEGRALS

371

Required area of the enclosed region OACA'O between circles

= 2 [area of the region ODAO + area of the region DCAD]

$$=2\left[\int_{0}^{1}y\,dx+\int_{1}^{2}y\,dx\right]$$

UPES Admission 2022 Open Apply Now!!

aglasem

CBSE ICSE / ISC STATE BOARDS MOCK TESTS STUDY MATERIAL ~ OLYMPIADS ~ SCHOOL ADMISSION

ENTRANCE EXAMS V STUDENTS GUIDE V OTHERS >

$$+ 2\left[\frac{1}{2}x\sqrt{4-x^2} + \frac{1}{2}\times 4\sin^{-1}\frac{x}{2}\right]_1^2$$

$$= \left[(x-2)\sqrt{4-(x-2)^2} + 4\sin^{-1}\left(\frac{x-2}{2}\right)\right]_0^1 + \left[x\sqrt{4-x^2} + 4\sin^{-1}\frac{x}{2}\right]_1^2$$

$$= \left[\left(-\sqrt{3} + 4\sin^{-1}\left(\frac{-1}{2}\right)\right) - 4\sin^{-1}(-1)\right] + \left[4\sin^{-1}1 - \sqrt{3} - 4\sin^{-1}\frac{1}{2}\right]$$

$$= \left[\left(-\sqrt{3} - 4\times\frac{\pi}{6}\right) + 4\times\frac{\pi}{2}\right] + \left[4\times\frac{\pi}{2} - \sqrt{3} - 4\times\frac{\pi}{6}\right]$$

$$= \left(-\sqrt{3} - \frac{2\pi}{3} + 2\pi\right) + \left(2\pi - \sqrt{3} - \frac{2\pi}{3}\right)$$

$$= \frac{8\pi}{3} - 2\sqrt{3}$$

EXERCISE 8.2

- 1. Find the area of the circle $4x^2 + 4y^2 = 9$ which is interior to the parabola $x^2 = 4y$.
- 2. Find the area bounded by curves $(x-1)^2 + y^2 = 1$ and $x^2 + y^2 = 1$.
- 3. Find the area of the region bounded by the curves $y = x^2 + 2$, y = x, x = 0 and
- Using integration find the area of region bounded by the triangle whose vertices are (-1, 0), (1, 3) and (3, 2).
- Using integration find the area of the triangular region whose sides have the equations y = 2x + 1, y = 3x + 1 and x = 4.

2019-20

372 MATHEMATICS

Choose the correct answer in the following exercises 6 and 7.

- 6. Smaller area enclosed by the circle $x^2 + y^2 = 4$ and the line x + y = 2 is
 - (A) $2(\pi 2)$
- (B) $\pi 2$
- (C) $2\pi 1$
- (D) $2(\pi + 2)$

UPES Admission 2022 Open Apply Now!!

ENTRANCE EXAMS V STUDENTS GUIDE V OTHERS V

Example 11 Find the area of the parabola $y^2 = 4ax$ bounded by its latus rectum.

Solution From Fig 8.20, the vertex of the parabola $y^2 = 4ax$ is at origin (0, 0). The equation of the latus rectum LSL' is x = a. Also, parabola is symmetrical about the x-axis.

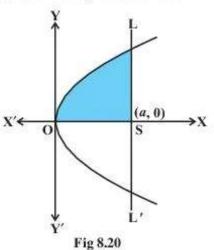
The required area of the region OLL'O = 2 (area of the region OLSO)

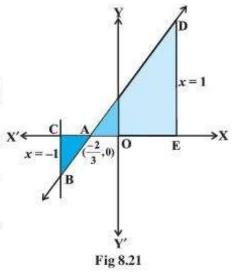
$$=2\int_0^a ydx = 2\int_0^a \sqrt{4ax} \ dx$$

$$= 2 \times 2 \sqrt{a} \int_{0}^{a} \sqrt{x} dx$$

$$=4\sqrt{a}\times\frac{2}{3}\left[x^{\frac{3}{2}}\right]_{0}^{a}$$

$$=\frac{8}{3}\sqrt{a}\left[a^{\frac{3}{2}}\right]=\frac{8}{3}a^2$$


Example 12 Find the area of the region bounded by the line y = 3x + 2, the x-axis and the ordinates x = -1 and x = 1.


Solution As shown in the Fig 8.21, the line X'

$$y = 3x + 2$$
 meets x-axis at $x = \frac{-2}{3}$ and its graph

lies below x-axis for $x \in \left(-1, \frac{-2}{3}\right)$ and above

x-axis for
$$x \in \left(\frac{-2}{3}, 1\right)$$
.

2019-20

APPLICATION OF INTEGRALS

373

The required area = Area of the region ACBA + Area of the region ADEA

ENTRANCE EXAMS V STUDENTS GUIDE V OTHERS V

$$= \left[\frac{2}{2} + 2x \right]_{-1} + \left[\frac{2}{2} + 2x \right]_{-2} = \frac{1}{6} + \frac{1}{6} = \frac{1}{3}$$

Example 13 Find the area bounded by the curve $y = \cos x$ between x = 0 and $x = 2\pi$.

Solution From the Fig 8.22, the required area = area of the region OABO + area of the region BCDB + area of the region DEFD.

Thus, we have the required area

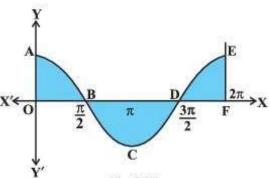


Fig 8.22

$$= \int_{0}^{\frac{\pi}{2}} \cos x \, dx + \left| \int_{\frac{\pi}{2}}^{\frac{3\pi}{2}} \cos x \, dx \right| + \int_{\frac{3\pi}{2}}^{2\pi} \cos x \, dx$$

$$= \left[\sin x\right]_0^{\frac{\pi}{2}} + \left[\sin x\right]_{\frac{\pi}{2}}^{\frac{3\pi}{2}} + \left[\sin x\right]_{\frac{3\pi}{2}}^{2\pi}$$

$$=1+2+1=4$$

Example 13 Prove that the curves $y^2 = 4x$ and $x^2 = 4y$ divide the area of the square bounded by x = 0, x = 4, $x' \leftarrow 0$ y = 4 and y = 0 into three equal parts.

Solution Note that the point of intersection of the parabolas $y^2 = 4x$ and $x^2 = 4y$ are (0, 0) and (4, 4) as

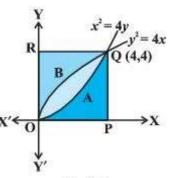


Fig 8.23

2019-20

374 MATHEMATICS

ENTRANCE EXAMS V STUDENTS GUIDE V OTHERS V

$$= \frac{32}{3} - \frac{16}{3} = \frac{16}{3} \qquad \dots (1)$$

Again, the area of the region OPQAO bounded by the curves $x^2 = 4y$, x = 0, x = 4and x-axis

$$= \int_0^4 \frac{x^2}{4} dx = \frac{1}{12} \left[x^3 \right]_0^4 = \frac{16}{3} \qquad \dots (2)$$

Similarly, the area of the region OBQRO bounded by the curve $y^2 = 4x$, y-axis, y = 0 and y = 4

$$= \int_0^4 x dy = \int_0^4 \frac{y^2}{4} dy = \frac{1}{12} \left[y^3 \right]_0^4 = \frac{16}{3} \qquad \dots (3)$$

From (1), (2) and (3), it is concluded that the area of the region OAQBO = area of the region OPQAO = area of the region OBQRO, i.e., area bounded by parabolas $y^2 = 4x$ and $x^2 = 4y$ divides the area of the square in three equal parts.

Example 14 Find the area of the region

$$\{(x, y): 0 \le y \le x^2 + 1, 0 \le y \le x + 1, 0 \le x \le 2\}$$

Solution Let us first sketch the region whose area is to be found out. This region is the intersection of the following regions.

$$A_1 = \{(x, y) : 0 \le y \le x^2 + 1\},$$

$$A_2 = \{(x, y) : 0 \le y \le x + 1\}$$

$$A_3 = \{(x, y) : 0 \le x \le 2\}$$

and

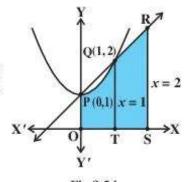


Fig 8.24

The points of intersection of $y = x^2 + 1$ and y = x + 1 are points P(0, 1) and Q(1, 2). From the Fig 8.24, the required region is the shaded region OPQRSTO whose area

= area of the region OTQPO + area of the region TSRQT

$$= \int_{0}^{1} (x^{2} + 1) dx + \int_{1}^{2} (x + 1) dx$$
 (Why?)

2019-20

ENTRANCE EXAMS V STUDENTS GUIDE V OTHERS

$$= \left[\left(\frac{1}{3} + 1 \right) - 0 \right] + \left[(2+2) - \left(\frac{1}{2} + 1 \right) \right] = \frac{23}{6}$$

Miscellaneous Exercise on Chapter 8

- Find the area under the given curves and given lines:
 - (i) $y = x^2$, x = 1, x = 2 and x-axis
 - (ii) $y = x^4$, x = 1, x = 5 and x-axis
- 2. Find the area between the curves y = x and $y = x^2$.
- Find the area of the region lying in the first quadrant and bounded by y = 4x², x = 0, y = 1 and y = 4.
- 4. Sketch the graph of y = |x+3| and evaluate $\int_{-\kappa}^{0} |x+3| dx$.
- 5. Find the area bounded by the curve $y = \sin x$ between x = 0 and $x = 2\pi$.
- 6. Find the area enclosed between the parabola $y^2 = 4ax$ and the line y = mx.
- 7. Find the area enclosed by the parabola $4y = 3x^2$ and the line 2y = 3x + 12.
- 8. Find the area of the smaller region bounded by the ellipse $\frac{x^2}{9} + \frac{y^2}{4} = 1$ and the line $\frac{x}{3} + \frac{y}{2} = 1$.
- 9. Find the area of the smaller region bounded by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ and the line $\frac{x}{a} + \frac{y}{b} = 1$.
- 10. Find the area of the region enclosed by the parabola $x^2 = y$, the line y = x + 2 and the x-axis.
- 11. Using the method of integration find the area bounded by the curve |x|+|y|=1. [Hint: The required region is bounded by lines x+y=1, x-y=1, -x+y=1 and -x-y=1].

2019-20

STUDY MATERIAL V CBSE ICSE / ISC STATE BOARDS NCERT **MOCK TESTS** OLYMPIADS ~ SCHOOL ADMISSION

ENTRANCE EXAMS V STUDENTS GUIDE V OTHERS >

whose vertices are A(2, 0), B (4, 5) and C (6, 3).

14. Using the method of integration find the area of the region bounded by lines:

2x + y = 4, 3x - 2y = 6 and x - 3y + 5 = 0

15. Find the area of the region $\{(x, y) : y^2 \le 4x, 4x^2 + 4y^2 \le 9\}$

Choose the correct answer in the following Exercises from 16 to 20.

- 16. Area bounded by the curve $y = x^3$, the x-axis and the ordinates x = -2 and x = 1 is
 - (A) 9
- (B) $\frac{-15}{4}$ (C) $\frac{15}{4}$ (D) $\frac{17}{4}$
- 17. The area bounded by the curve y = x |x|, x-axis and the ordinates x = -1 and x = 1 is given by
 - (A) 0
- (B) $\frac{1}{3}$ (C) $\frac{2}{3}$ (D) $\frac{4}{3}$

[Hint: $y = x^2$ if x > 0 and $y = -x^2$ if x < 0].

- 18. The area of the circle $x^2 + y^2 = 16$ exterior to the parabola $y^2 = 6x$ is
 - (A) $\frac{4}{3}(4\pi \sqrt{3})$ (B) $\frac{4}{3}(4\pi + \sqrt{3})$ (C) $\frac{4}{3}(8\pi \sqrt{3})$ (D) $\frac{4}{3}(8\pi + \sqrt{3})$
- 19. The area bounded by the y-axis, $y = \cos x$ and $y = \sin x$ when $0 \le x \le \frac{\pi}{2}$ is
 - (A) $2(\sqrt{2}-1)$ (B) $\sqrt{2}-1$ (C) $\sqrt{2}+1$ (D) $\sqrt{2}$

Summary

- The area of the region bounded by the curve y = f(x), x-axis and the lines x = a and x = b (b > a) is given by the formula: Area = $\int_a^b y dx = \int_a^b f(x) dx$.
- The area of the region bounded by the curve x = φ (y), y-axis and the lines y = c, y = d is given by the formula: Area = $\int_{-\infty}^{d} x dy = \int_{-\infty}^{d} \phi(y) dy$.

2019-20

ENTRANCE EXAMS V STUDENTS GUIDE V OTHERS V

the lines x = a, x = b is given by the formula,

Area =
$$\int_a^b [f(x) - g(x)] dx$$
, where, $f(x) \ge g(x)$ in $[a, b]$

• If $f(x) \ge g(x)$ in [a, c] and $f(x) \le g(x)$ in [c, b], a < c < b, then

Area = $\int_a^c [f(x) - g(x)] dx + \int_c^b [g(x) - f(x)] dx$.

Historical Note

The origin of the Integral Calculus goes back to the early period of development of Mathematics and it is related to the method of exhaustion developed by the mathematicians of ancient Greece. This method arose in the solution of problems on calculating areas of plane figures, surface areas and volumes of solid bodies etc. In this sense, the method of exhaustion can be regarded as an early method of integration. The greatest development of method of exhaustion in the early period was obtained in the works of Eudoxus (440 B.C.) and Archimedes (300 B.C.)

Systematic approach to the theory of Calculus began in the 17th century. In 1665, Newton began his work on the Calculus described by him as the theory of fluxions and used his theory in finding the tangent and radius of curvature at any point on a curve. Newton introduced the basic notion of inverse function called the anti derivative (indefinite integral) or the inverse method of tangents.

During 1684-86, Leibnitz published an article in the Acta Eruditorum which he called Calculas summatorius, since it was connected with the summation of a number of infinitely small areas, whose sum, he indicated by the symbol 'j'. In 1696, he followed a suggestion made by J. Bernoulli and changed this article to Calculus integrali. This corresponded to Newton's inverse method of tangents.

Both Newton and Leibnitz adopted quite independent lines of approach which was radically different. However, respective theories accomplished results that were practically identical. Leibnitz used the notion of definite integral and what is quite certain is that he first clearly appreciated tie up between the antiderivative and the definite integral.

Conclusively, the fundamental concepts and theory of Integral Calculus and primarily its relationships with Differential Calculus were developed in the work of P.de Fermat, I. Newton and G. Leibnitz at the end of 17th century.

2019-20

 ${\tt CBSE} \lor {\tt ICSE} / {\tt ISC} \quad {\tt STATE} \ {\tt BOARDS} \lor \quad {\tt NCERT} \lor \quad {\tt MOCK} \ {\tt TESTS} \quad {\tt STUDY} \ {\tt MATERIAL} \lor \quad {\tt OLYMPIADS} \lor \quad {\tt SCHOOL} \ {\tt ADMISSION}$

ENTRANCE EXAMS V STUDENTS GUIDE V OTHERS V

However, this justification by the concept of limit was only developed in the works of A.L. Cauchy in the early 19th century. Lastly, it is worth mentioning the following quotation by Lie Sophie's:

"It may be said that the conceptions of differential quotient and integral which in their origin certainly go back to Archimedes were introduced in Science by the investigations of Kepler, Descartes, Cavalieri, Fermat and Wallis The discovery that differentiation and integration are inverse operations belongs to Newton and Leibnitz".

CBSE V ICSE / ISC STATE BOARDS V NCERT V MOCK TESTS STUDY MATERIAL V OLYMPIADS V SCHOOL ADMISSION ENTRANCE EXAMS V STUDENTS GUIDE V OTHERS V

SET Exam 2022 - Symbiosis Application Form

AEEE 2020 - Amrita Vishwa Vidyapeetham

It is easy to download the NCERT Class 12 Books. Just click on the link, a new window will open containing all the NCERT Book Class 12 Maths pdf files chapter-wise. Select chapter you wish to download and its done. You will have the PDF on your device to study offline.

■ Click Here to go to the page where you can download NCERT Maths Book Class 12 PDF.

Buy NCERT Book for Class 12 Maths Online

You can buy Class 12 Maths NCERT Book from various online platforms and get doorstep delivery in no time. For your convenience, we have curated direct link to NCERT Book Class 12 Maths so that you need not keep the search for it. You can simply visit the link to go to amazon website and order online.

Click Here to go to the Amazon website to buy NCERT Book Class 12 Maths Online.

NCERT Solutions for Class 12 Maths

After reading the chapter, you can refer to our Class 12 NCERT Solutions. Step by Step answers to all the exercise questions are provided by experts to help you prepare better in your examination.

Click here to get NCERT Solutions for Class 12.

Class 12 Study Material – Notes, Important Questions, Practice Tests

To prepare further for Class 12 Maths subject you can get Revision Notes, Important Questions at aglasem.com for free. Also you can give online test and analyze your preparation level.

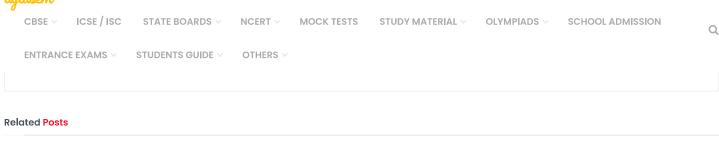
Here students can get class & chapter wise Class 12 NCERT notes, which is very helpful to understand the subject and its chapter in a good manner. With the help of the link provided below. You can get the class 12 NCERT notes.

- Click Here to get the Notes.
- Click Here to check Important Questions.
- Click Here to give a free Mock Test.

All the study material was prepared to help you understand the topic easy and better way. If you like our resources, please share the post!

CLASS 12 MATHS NCERT BOOK

NCERT SOLUTIONS


Tags: Class 12th NCERT Books NCERT Books Class 12 NCERT Maths Book

^

12TH CLASS

12TH CLASS

HPBOSE Class 12th Model Question Paper for Physics 2022 | Download HP Board Term 2 Sample Paper HPBOSE Class 12th Model Question Paper for Political Science 2022 | Download HP Board Term 2 Sample Paper

12TH CLASS 12TH CLASS

HPBOSE Class 12th Model Question Paper for History 2022 | Download HP Board Term 2 Sample Paper HPBOSE Class 12th Model Question Paper for Chemistry 2022 | Download HP Board Term 2 Sample Paper

Discussion about this post

CBSE V ICSE / ISC STATE BOARDS V NCERT V MOCK TESTS STUDY MATERIAL V OLYMPIADS V SCHOOL ADMISSION Q
ENTRANCE EXAMS V STUDENTS GUIDE V OTHERS V

Class Wise Study Material

Class 1

Class 2

Class 3

Class 4

Class 5

Class 6 Class 7

Class 8

Class 9

Class 10

Class 11

Class 12

CBSE

CBSE Date Sheet

CBSE Syllabus

CBSE Sample Papers

CBSE Question Papers

CBSE Result

Study Material

Class Notes

NCERT Solutions

NCERT Books

HC Verma Solutions

UPES Admission 2022 Open Apply Now!!

CBSE V ICSE / ISC STATE BOARDS V NCERT V MOCK TESTS STUDY MATERIAL V OLYMPIADS V SCHOOL ADMISSION

ENTRANCE EXAMS V STUDENTS GUIDE V OTHERS V

Latest

Disclaimer / Terms of Use / Privacy Policy / Contact

^